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Abstract
The elliptic variational inequality of the second kind for the flow of a viscous,
plastic fluid in a pipe is considered. This elliptic variational inequality is related to
second order partial differential operator. The physical and mathematical
interpretation and some properties of the solution are proved.

1- Introduction

The variational inequality is an important and very useful class of non-linear
problems arising from mechanics, physics etc. the EVI has two classes, namely EVI
of the first kind and EV1 of the second kind. In this paper we shall study the existence,
uniqueness and properties of the solutions of EVI of the second kind.

1-1: Notations:
e V:real Hilbert space with scalar product (. , . ) and associated norm || .

e V": The dual space of V.
e a(.,.):VxV >R isabilinear, continuous and V- elliptic formon V xV .
A bilinear form a(. , .) is said to be V-elliptic if there exists a positive constant

a such that a(v,v)> a||V||2 VveV .
In general we do not assume a(.,.) to be symmetric, since in some applications
non-symmetric bilinear forms may occur naturally [1].
e L:V — R continuous, linear functional.
e K isaclosed, convex, non-empty subset of V.
o j():Vo>R=RU w0} is a convex, lower semi- continuous (I.s.c) and proper
functional.
@((.) is proper if j(v)>-0 V veV and j#©).

1.2: EVI of First Kind
To find ueV such that u is a solution of the problem :

a(u,v-u)>L(v-u) , Wvek
P ...
1" uek
1.3: EVI of second kind
To find ueV such that u is a solution of the problem :
5 {a(u,v—u)+ jv)-ju)>L(v-u) ,v veV
o

1.4: Existence and Uniqueness Results for EVI of Second Kind
1.4.1: A Theorem of Existence and Uniqueness

Theorem 1.4.1 [1]: The problem P, has one and only one solution.
Proof:



1- Unigueness
Let u; and u, be two solutions of (P2). Then we have:
a(ul,v—u1)+ j(v)- j(ul)z L(v—ul) vveV,u;
a(uz,v— u2)+ j(v)- J(uz)z Llv— u2) vveV,u, eV ..(2)
Since j(.) is a proper map there exists voeV such that -00<j(v,)< oo.
Hence for i=1,2
-00<J(Ui)<J(Vo)-L(VoUi)Fa(Ui,VorUi) e e v ve v e e e, 3
This shows that j(u;) is finite for i=1,2. Hence by substituting u, for v in (1)
and u; for v in (2) and adding we obtain

aHul—UZHZéa(ul—uz,ul—uz)éo ............................. 4)

Hence u; = uy
2. Existence:

For each ueV and p>0 we associate a problem (H%) of type (P) defined as
below:-

To find weV such that:-

(e ).m{(w,v—w)+ £i(v)— pi(w)> (u,v—w)+ pL(v—w)— pa(u,v-w) VveV
P WeV (5)
The advantage of considering this problem overt the problem (P,) is that the
bilinear form associated with (H;')) is the inner product of V which is symmetric.

Let us first assume that (H%) has a unique solution for all ueV and p>0. For

each p define the map f, :V —V by fp(u):w where w is the unique solution of

m3)

We shall show that f p is a uniformly strict contraction mapping for suitably
chosen p .

Let ug, u; eV and W = fp(ui ) iI=1,2. since j(.) is proper we have j(u;) finite
which can be proved as in (3). Therefore we have
(w,, w, —w, )+ pj(w,)— pj(w, )= (uy, w, —w, )+ pL(w, —w,)— pa(u,, w, —w, ),.......(6)

(W, , w; —w, )"'IOJ-(Wl)_Pj(Wz)Z (uz Wy =W, )+ pL(w, —w, )—pa(u2 » Wy _Wz) -------- ()
Adding these inequalities we obtain

Jfploy)- fp(uzl‘z =[w, ‘W1H2
<{(1 = pANu, —ug pwy —wy )

<[ —pA||Hu2 —U1HHW2 —W1H. L eeeeeeiieeiiieen 0 (8)
Hence:

pr(ul)— fp(“z]‘gnl —,oA”Hu2 —u1H

It is easy to show that || — pA| <1 when 0< p < 2a

A"




This proves that fp is uniformly a strict contracting mapping and hence has a
unique fixed point u. This u turns out to be the solution of (p,) since fp (wW=u

implies.
(u, v-u)+pj(v)- pj(u)=>(u, v-u)+ pL(v-u)-pa(u, v-u) VveV.

Therefore
a(u,v-u)+j(v)-j(u) >L(v-u) VeV . viiiiiiiinin9)
Hence (P,) has a unique solution.

2- An Example of EVI of the second kind
The Flow of A viscous, plastic Fluid in A pipe.

2.1: Notations

* Q) : a bounded domain in R?.

*T: 0Q).

* x={X1, X2} a generic point of Q.

*v:{ai,aﬂ}
)

* C" ( ) Space of m-times continuously differentiable real valued functions for

which all the derivative up to order m are continuous in Q.
*Cl(Q)= {VE c" ( ) supp (v) is a compact subset of Q}

HD\?‘ for veC™(Q) where a=(ou, @) ; a1, oy non-

“Mm,p.c = e

o \<m
ol

OX 10X 3

: completion of C" ( ) in the norm defined above.

completlon of CJ'(Q) in the obove norm.

negative integers, o|=a, + a, and D =

2.2: The continuous Problem: Existence and Uniqueness results [2].
Let © be a bounded domain of R? with a smooth boundary I". We define

V=H}©@)
a(u,v):IVu-Vvdx

*

L(v)=<f,v> ,feV
:I|Vv|dx

—

Let p, g be two positive parameters, then
Theorem 2.2.1: The variational inequality

{ua(u,v—u)+ gi(v)-gj(u)=L(v-u) wweV,



has a unique solution.

Proof:

In order to apply theorem (1.4.1) , we only have to verify that j(.) is convex,
proper and |.s.c.

It is obvious that j(.) is convex and proper.

Letu,v eV, then

[§(v)= ju) <ymeas(Q)u =], , oo (12)

hence j(.) is l.s.c.
This proves the theorem.

Remarks
1. If we take g=0 in (10) we recover the variational formulation of the Dirichlet
problem
— pAu = f inQ
{ u=0 onT"
2. since a(.,.) is symmetric , the solution u of (10) is characterized as the unique
solution of the minimization problem

J(u)< J(v) vveV
12)........ {

ueV

where J (v)=ga(v,v)+ gj(v)-L(v)

2.3: Physical Motivation
If L(v):cJ'vdx (for instance ¢>0), it is proved in [3] that (10) models the
Q

laminar, stationary flow of a Bingham fluid in a cylindrical pipe of cross-section Q,
u(x) being the velocity at xeQ[4], [5]. The constant c is the linear decay of pressure
and p, g are respectively. The viscosity and plasticity yield of the fluid. The above
medium behaves like a viscous fluid (of viscosity p) in Q* = {x eQ= |Vu(x] > O}and

like a rigid medium in Q° ={x e Q = Vu(x)=0}, [6], [7].

2.4: Existence of Multipliers
Let us define A by:

A={g:qe2(Q)x L2 (Q),Ja(x) <1 ae

|q(x] =407 (X)+ qf(x) ., then we have

Theorem 2.4.1
The solution u of (10) is characterized by the existence of p such that

pa(u,v)+ gJ‘ p.vvdx =< f,v> vveV,
Q



p.Vu=|Vuy| ae.,
(14) . JLpeA
Proof
We shall prove that (13), (14) imply (10). It follows from (13) that
pau,v—u)+ gJ' p.V(v—u)dx = ga(u,v-u)+ gj p.Vvdx —
Q Q
(a5)......... {— gJ' pVudx=< f,v—-u> VveV
Q

It follows from (14) that
Ip.dex:I|Vu|dx et e (16)
Q

Q

and from the definition of A that
I p.Vudx < I| p| - [Vv]dx < I|Vv|dx wWeV . ........(17)
Q Q Q

Then from (13), (15)-(17) we obtain that
pa(u,v-u)+gj(v)-gj(u)=<fv-u> vveV,

{UEV

Thus (13) and (14) implies (10).
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